TRUCKEE RIVER BASIN, LAKE TAHOE

10336674 WARD CREEK BELOW CONFLUENCE NEAR TAHOE CITY CA—Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1993 to current year.

REMARKS.--In October 1992, station was incorporated into the expanded Lake Tahoe Interagency Monitoring Program to monitor tributary contributions of nutrients and sediment to Lake Tahoe. Samples were analyzed by the University of California, Davis, Tahoe Research Group.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004

			Specif.			Ammonia +	Ammonia +		¹ Nitrite +	Ortho- phos-			Sus- pended	Sus- pended
		Instan-	conduc-	m.	T.	org-N,	org-N,	Ammonia	nitrate	phate,	Phos-	Phos-	sedi-	sedi-
		taneous dis-	tance, wat unf	Temper- ature,	Temper- ature,	water, fltrd,	water, unfltrd	water, fltrd,	water fltrd,	water, fltrd,	phorus, water,	phorus, water,	ment concen-	ment dis-
		charge,	uS/cm	air,	water,	mg/L	mg/L	mg/L	mg/L	mg/L	fltrd,	unfltrd	tration	charge,
Date	Time	cfs	25 degC	deg C	deg C	as N	as N	as N	as N	as P	mg/L	mg/L	mg/L	tons/d
		(00061)	(00095)	(00020)	(00010)	(00623)	(00625)	(00608)	(00631)	(00671)	(00666)	(00665)	(80154)	(80155)
OCT														
22	1150	.27	49	21.1	7.0		.06	.004	.002	.003	.012	.012	<1	<.01
NOV	1130	.40	48	8.5	1.5		.07	.003	< 002	.003	.006	.008	1	<.01
28 DEC	1130	.40	40	8.3	1.3		.07	.003	<.002	.003	.000	.008	1	<.01
19	1240	1.2	47	3.5	1.9	.05	.16	.003	.018	.001	.007	.008	1	<.01
JAN														
22	1130	1.3	46	.0	1.0		.09	.003	.020	.004	.012	.017	1	<.01
FEB 17	1535	8.9	39	4.5	.5	.13	.18	.004	.059	.004	.010	.018	6	.14
MAR	1333	0.9	39	4.5	.5	.13	.10	.004	.039	.004	.010	.010	U	.14
11	1150	6.5	43	11.0	2.0	.07	.08	.005	.014	.001	.009	.010	1	.02
18	1615	21	36	11.0	1.0	.07	.18	.003	.023	.001	.007	.043	31	1.8
APR	1005	25	22	2.5	1.5	06	1.1	. 002	021	002	000	012	_	47
06 12	1905 1650	35 40	32 30	3.5 11.0	1.5 2.5	.06 .04	.11 .08	<.003 <.003	.021 .019	.002 .002	.008 .008	.013 .014	5 5	.47 .54
27	1720	81	26	15.0	1.5	.08	.20	.006	.033	.002	.008	.090	125	27
28	1155	40	30	12.5	3.5	.07	.15	.004	.033	.002	.006	.011	2	.22
MAY														
04 05	1030 1705	56 114	28	15.5 13.5	3.0 3.0	.06	.13 .15	.004 .005	.019	.001 .002	.009 .011	.014 .042	4 34	.60
13	1450	35	24 29	15.0	6.0	.09 .05	.13	.005	.019 .015	.002	.009	.042	54 5	10 .47
31	1035	38	28	18.0	5.5	.09	.06	.005	.008	.002	.008	.015	2	.21
JUN														
10	1155	24	30	11.0	7.0	.06	.18	.007	.002	.004	.012	.013	2	.13
JUL	1150	2.0	27	22.0	12.0		06	. 002	002	004	014	015	1	01
15 AUG	1150	3.6	37	22.0	12.0		.06	<.003	.003	.004	.014	.015	1	.01
16	1400	.46	43		16.0		.07	.003	.006	.004	.010	.010	1	<.01
SEP														
17	1320	.17	72	19.5	14.0	.08	.10	.007	.002	.004	.011	.015	2	<.01

Remark codes used in this table:

< -- Less than

¹ -- Hydrazine method used to determine nitrate plus nitrite concentrations was found to have interferences caused by other common ions in water samples. Values may be adjusted in the future to correct for these interferences.